

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

Challenge #10 Solution

by Tom Bennett

This challenge starts with a single executable file, loader.exe. Dropping it into PEview (or

equivalent tool) tells us it is a 32-bit PE file. We start by taking a look at the strings to see if we

can easily discover anything about the executable before digging deeper. As shown in Figure

1, a quick look through the strings tells us we are likely dealing with a compiled AutoIt script.

Figure 1 AutoIt strings

From AutoIt’s website: "AutoIt v3 is a freeware BASIC-like scripting language designed for

automating the Windows GUI and general scripting." Now we want to search for any

decompiler tools for compiled AutoIt scripts. A Web search shows us several options, in this

case we will go with the Exe2Aut tool. As the disclaimer for the tool recommends, we drag and

drop loader.exe onto Exe2Aut in a safe virtual machine environment since there is a chance

it can be executed and perform malicious behaviors. The tool works, and we find ourselves

with another executable ioctl.exe, two drivers challenge-xp.sys and challenge-7.sys,

and the decompiled AutoIt script. The driver names suggest that they are each for a specific

OS (Windows XP or Windows 7), so we take a closer a look at the script to see how these files

are used and how they relate to each other. Scrolling down past all the service related

functions, we find some evidence to support our deduction about the drivers as shown in

Figure 2.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

Figure 2 OS version check

Immediately following the OS checks, we find some obfuscated code that we can assume will

do something with the files that it drops onto the system. Before getting messy with

deobfuscating this code, we take a look at the executable and OS-specific driver of our

choice. Thankfully, the executable only has one function and no obfuscation or anti-analysis

tricks of any kind. It simply opens a handle to a device named challenge which is likely our

driver, and sends an I/O request packet (IRP) with an I/O Control (IOCTL) code supplied as

ASCII encoded hex via the command line. It waits for a response from the driver, but

disregards it and exits. In summary, this binary is a simple tool to send a one way IRP to our

challenge driver. This leads us to believe there is some IOCTL code that we need to discover to

help us along with this challenge. With no other clues in this file, we move onto the driver. The

first thing we notice when opening the driver in IDA Pro is how long it takes to perform its initial

analysis. Once done, we poke around the functions and quickly discover a big mess as shown

in Figure 3.

Figure 3 Big function

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

It turns out there are several functions in this driver that look much like this one. To make

matters worse, the IRP handler function has cases for around 400 IOCTL codes! It is probably

not a good idea for us to continue digging in the driver at this point, we need to find that

IOCTL code. Perhaps one of those obfuscated AutoIt script lines will make use of ioctl.exe

and give us the right code.

Figure 4 IRP handler function

The obfuscation in the AutoIt script involves decrypting each line of code and executing it. It

uses the CallWindowProc API to achieve arbitrary execution, in this case executing shellcode

it places in memory using AutoIt's DllStructCreate function. This shellcode contains some

kind of decryption routine used to decrypt the script lines with the key flarebearstare. To

analyze the decryption routine, we copy the hex value out of the AutoIt script into a small

Python script that uses the unhexlify function from the binascii module to convert it into

binary and write it to file. Once we open this file in IDA Pro to view the disassembly, we can see

there are two successive loops both with 256 iterations as displayed in Figure 5.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

Figure 5 Decryption function

Those with cryptography experience, or a fair amount of malware analysis experience, may

recognize this as possibly being the key scheduling algorithm (KSA) for an implementation of

the RC4 stream cipher. Further analysis confirms this to be the case, leaving us with the task of

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

decrypting the three lines of AutoIt code. Once decrypted, we can see that the script installs

and starts the challenge service, then executes ioctl.exe with the argument 22E0DC. There

is our IOCTL code!

Figure 6 Decrypted AutoIt script lines

After calculating the proper jump table destination in the IRP handler function, we identify the

function we need to look at next, which is partially illustrated in Figure 7. We see that this

function is performing a bit test on each bit of the first byte of var_1C, which was initialized to

zero. It then does the same thing for the next byte, and the byte after that, up to 22 bytes.

.text:00318D82 xor eax, eax

.text:00318D84 mov [ebp+var_1C], eax

.text:00318D87 mov [ebp+var_18], eax

.text:00318D8A mov [ebp+var_14], eax

.text:00318D8D mov [ebp+var_10], eax

.text:00318D90 mov [ebp+var_C], eax

.text:00318D93 mov [ebp+var_8], ax

.text:00318D97 movzx ecx, byte ptr [ebp+var_1C]

.text:00318D9B and ecx, 1

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

.text:00318D9E jz short loc_318DA7

.text:00318DA0 xor al, al

.text:00318DA2 jmp loc_3198B6

.text:00318DA7 ; --

.text:00318DA7

.text:00318DA7 loc_318DA7:

.text:00318DA7 movzx edx, byte ptr [ebp+var_1C]

.text:00318DAB and edx, 2

.text:00318DAE jz short loc_318DB7

.text:00318DB0 xor al, al

.text:00318DB2 jmp loc_3198B6

.text:00318DB7 ; --

.text:00318DB7

.text:00318DB7 loc_318DB7:

.text:00318DB7 movzx eax, byte ptr [ebp+var_1C]

.text:00318DBB and eax, 4

.text:00318DBE jnz short loc_318DC7

.text:00318DC0 xor al, al

.text:00318DC2 jmp loc_3198B6

.text:00318DC7 ; --

.text:00318DC7

.text:00318DC7 loc_318DC7:

.text:00318DC7 movzx ecx, byte ptr [ebp+var_1C]

.text:00318DCB and ecx, 8

.text:00318DCE jz short loc_318DD7

.text:00318DD0 xor al, al

.text:00318DD2 jmp loc_3198B6

Figure 7 Bit test function snippet

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 7

We can assume that these bit tests are a clue to us of the bits that "should" be there, so we just

need a way to translate these bit tests to actual bits. Considering that the determination of

whether a bit should be "on" or "off" comes down to whether a jz or jnz instruction is used for

a branch, we can write a small script to parse the code and do this for us. The resulting buffer

turns out to be the string try this ioctl: 22E068.

Figure 8 Bit test function deobfuscation script

This IOCTL code leads us to one of those gigantic, messy functions. However, there must be

something special about this one. Browsing through the code, we see a lot of useless math

being done on variables that are just thrown away. Ultimately, the only thing being done in this

function that really matters is moving byte values into a global character array. The problem is

that there are many branches in this function moving different values into different positions in

the array. Which branches are the correct ones to take? How do we influence that? If we look

at the very end of this large function, we can see that a pointer to some element of that

global character array is pushed onto the stack as an argument for a function being called. A

cursory look at this function reveals cryptography that operates on the buffer from this point in

the array and that the second argument specifies the length of the buffer. Also, looking at the

cross references to characters in the global array shows us that only from this point forward is

every byte referenced. Before this point, there are many elements in the array that are not

directly referenced.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

Figure 9 Global array cross references

It seems then, that there must be a path through this function that will fill this array with the

correct characters that will decrypt to something meaningful (hopefully the key). Looking at

each conditional expression, an interesting pattern becomes clear: these conditionals are not

really conditional at all! Shortly before each test operation, the variable being tested is set to

zero. After checking a few branches, it becomes apparent that the branches filling the array

that we care about are never taken with the code in its current state. There are several ways

we could go about retrieving the buffer we are looking for, we will take the dynamic

approach and apply patches to fix the branches for us. Since Windows performs an integrity

check on a driver file before loading it, we will patch in memory to avoid having to deal with

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

another obstacle. Using windbg, this can be accomplished by dumping the function's memory

using the .writemem command, patching the function on disk, then reading it back to

memory in the same place with the .readmem command. Since there are many places in the

code that need to be patched and the patch is always the same, it is easier to do a simple

find and replace operation. This can be done with the following Python code snippet.

string.replace(buf, "\xc6\x45\x9e\x00", "\xc6\x45\x9e\x01")

Figure 10 Patching code snippet

With the patched function in memory, we set a breakpoint on the call to the crypto function

and use ioctl.exe to execute it. Stepping over the function and checking the buffer reveals

the key unconditional_conditions@flare-on.com.

mailto:info@FireEye.com

