

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

Challenge #1 Solution

by Nick Harbour

If you ran the file Flare-On_start_2015.exe which was available for download on the website, and

accepted the EULA, it extracted a file named

“i_am_happy_you_are_to_playing_the_flareon_challenge.exe”. If you run this

program on the command line it displays a prompt asking for a password, as shown in the figure

below.

Figure 1: Screenshot of Solution #1 Prompt

If you enter the correct password, it will display the message “You are success” and it will display “You

are failure” if you did not enter the correct password. The correct password will be the email address

that you will send a message in order to receive the next challenge. Let’s break apart the code and

learn what that address is!

If you open the program with a disassembler such as IDA Pro (the freeware version will work), you will

see that there is only one function in the program. This program is so small that I can include a

screenshot showing the program in its entirety below.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

Figure 2: Graph of Solution #1 Disassembly

The first two API calls it makes are to a function called GetStdHandle(), which will return a handle

to one of the three standard IO streams for the process (standard input, output, and error). If you

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

select one of the values being passed to this function you can make IDA Pro show you the name of the

constant being passed in (right click->Use standard symbolic constant->find the value of the form

STD_*_HANDLE). In this case the values are STD_INPUT_HANDLE and STD_OUTPUT_HANDLE,

respectively. After each call, the eax register is moved to a stack variable. Since eax represents the

return value from a function after a call, this register contains the handle values for the standard

handles after each call, and they are being saved on the stack. If you label the stack variables as well as

rename the constants, your disassembly for this section of code will look something like Figure 3

below.

Figure 3: Marked up calls to GetStdHandle for Solution #1

The next two API functions called in the program are WriteFile() and ReadFile(). Let’s look

closer at this section of code to understand its functionality.

Figure 4: WriteFile and ReadFile calls in Solution #1

The call to WriteFile() takes 5 arguments (you can verify this on the MSDN documentation) and

these correspond to the 5 push instructions preceding the call. This call is simply writing the prompt

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

message to the standard output handle, which causes it to be displayed to the user in the terminal.

The next call to ReadFile() is more interesting. It also takes 5 arguments, starting with the file

handle to read from, the buffer to store the data, and the maximum amount to read. The program is

reading at most 50 bytes into a buffer at memory address 0x402158. You can right click on the name “

byte_402158” and select “rename” to give it a more descriptive name now that we know its purpose in

this program. I have chosen to name it “input_buffer”.

The code immediately following the ReadFile() call we will skip for now, and instead focus on the

two blocks of code near the end of the program as shown below in Figure 5.

Figure 5: Success and Failure code blocks in Solution #1

I have taken the liberty of color coding these blocks. If the block on the left executes, it will display to

the terminal “You are success” so I have colored it mint green. If the block on the right executes, it will

display “You are failure” so I have colored it a variant of Coral Pink. You can color a node by right

clicking on the node header and selecting the option “Set node color”. I recommend choosing colors

which both convey meaning and do not interfere with the legibility of the text (as using a color such as

pure green or red would have).

The selection of which block to execute occurs by the jl instruction (jump if less than) at memory

address 0x401061 or potentially by the jnz instruction (jump if not zero or not equal) at memory

address 0x40105B. Let’s examine this code are in more detail.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

Figure 6: Decoding loop in Solution #1

Not shown in this fragment is the instruction “xor ecx, ecx” which simply sets the ecx register to

zero prior to the beginning of the loop. We can tell that this is a loop because there is a thick, backward

pointing arrow in our disassembly graph. The JL instruction at the end jumps back to the beginning of

the loop if ecx is less than 18h (24 in decimal), otherwise the code will execute the success block. The

ecx register is incremented before this comparison, and it started out the loop as the value 0, so it is

likely the loop counter. Therefore this program will only print the success message if this loop iterates a

full 24 times.

The loop can short circuit, however. In each iteration of the loop, a byte is loaded from the input buffer

in the al register, then XOR’d with the value 0x7D, then compared against a byte in another array at

memory address 0x402140. If the bytes match then the zero flag will be set, causing the jnz

instruction to not branch. If the bytes did not match (i.e. you entered a wrong digit in the password)

then the zero flag will not be set, causing the branch to the failure bock to occur.

Since the program is performing a single byte XOR loop. If you then XOR the bytes found at memory

address 0x402140 with the value 0x7D, the correct answer will be revealed. Almost any hex editor is

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

suitable for the task, as is IDA pro itself. Figure 7 below is a small IDA Python script to reveal the correct

answer.

for i in range(0x00402140, 0x00402158):

 b = 0x7D ^ idc.Byte(i)

 idc.PatchByte(i, b)

Figure 7: IDAPython Decoding Script for Solution #1

Running the script reveals the correct input at the memory address of the key in the IDA database:

Figure 8: Decoded Answer for Solution #1

Always confirm your Flare-On solutions by trying the input in the program!

Figure 9: Success Output for Solution #1

mailto:info@FireEye.com

